Identification of Dynamic Models by Using Metaheuristic Algorithms


  • Mustafa Danaci Erciyes University
  • Fehim Koylu Erciyes University
  • Zaid Ali Al-Sumaidaee Erciyes University



Dynamic Weighing System(DWS),System Identification(SI),Parameters Predicted, Genetic Algorithm (GA), Biogeography-Based Optimization Algorithm (BBO), Ant Colony Optimization Algorithm (ACO), Artificial Bee Colony Algorithm (ABC).


A modified versions of metaheuristic algorithms are presented to compare their performance in identifying the structural dynamic systems. Genetic algorithm, biogeography based optimization algorithm, ant colony optimization algorithm and artificial bee colony algorithm are heuristic algorithms that have robustness and ease of implementation with simple structure. Different algorithms were selected some from evolution algorithms and other from swarm algorithms   to boost the equilibrium of global searches and local searches, to compare the performance and investigate the applicability of proposed algorithms to system identification; three cases are suggested under different conditions concerning data availability, different noise rate and previous familiarity of parameters. Simulation results show these proposed algorithms produce excellent parameter estimation, even with little measurements and a high noise rate.


Download data is not yet available.


Shi, W.J., White, N.M., Brignell, J.E., 1993, Adaptive filters in load cell response correction, Sensors & Actuators A, 37:280-285.

Shu, W.Q., 1993, Dynamic weighing under non-zero initial conditions, IEEE Transactions on Inst. & Meas., 42(4): 806-811

Danaci, M. and Horrocks, D.H., 1995, High speed modelling by non-linear auto regression, Cardiff School of Engineering, University of Wales PO Box 917, Cardiff, CF2 1XH, UK.

Hamilic M., Balacharhan W., 1995, Kalman filter for dynamic weighing system, industrial electronics, pp. 786-791, ISIE '95, Proceedings of the IEEE International Symposium on, 10-14 July, Dubrovnik, Croatia.

Danaci, M. 1996, Non-Linear Regression Techniques For Dynamic Weighing Systems Ph.D. Thesis. Cardiff University of Wales, UK.

Gray J.G., Murray-Smith, D.J., Li Y.,Sharman K.C., Weinbrenner T., 1998, Nonlinear model structure identification using genetic programming, Control Engineering Practice, 6(11): 1341-1352.

Danaci M. Kal?nl? A., 1999, Detection of the starting of the newly applied mass for successive weighing, Mathematical & Computational Applications, 4(1):53-59.

Danaci M., Yaz M., 1999, New approaches to success?ve cont?nuous weighing, pp. 584-591, Proceedings of the IASTED International Conference Control And Appl?cat?ons Banff, July 25-30, Canada.

Danaci, M., 2000, Platform parameters ?dentification by non-linear regression method, pp. 811-818, 14th European Simulation Multiconference, ESM’2000, 23 – 26 May, Ghent, Belgium.

Li J. Zhou L. Wang Q., 2007, Study on dynamic weighing system base on intelligent algorithm, 765-768, IEEE International Conference on Control and Automation WeDP-17 Guangzhou, 30 May-1 June, Guangzhou, China.

Xiaoyan C., Zhenliang, L., 2008, An ?ntelligent dynamic weighing controller, pp. 1609-1612, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, 1-3 Sept.,Qingdao, China.

Gao H., Pang W., 2009, A high-accuracy dynamic weighing system based on singleidler conveyor belt, pp. 2483-2487, Proceeding of the Eighth International Conference on Machine Learning and Cybernetics, 2-15 July, Hebei, China.

Wu Q., Pan R., Luo X., Li Y., 2009, A signal processing method for dynamic weighing system by ssa-lvq network, pp. 4-403 - 4-407, The 9th International Conference on Electronic Measurement & Instruments, 6-19 Aug., 87 Beijing, China.

Liao G. and Xi J., 2010, Design and ?mplement of vehicle dynamic weighing system, pp. 1131-1134 International Conference on Intelligent Computation Technology and Automation, 11-12 May, Changsha, China.

Jeridi W., Benabdallah S., Hamdi M., Boudriga N., 2010, Dynamic expert weighing for security risk analysis team synergy, pp. 1 - 8, Engineering Systems Management and Its Applications (ICESMA), Second International Conference on, 30 March-1 April, 2010.

Hu P., Liang L., Hu J., 2010, The control strategy and application for dynamic quantitative weighing system based on embedded linux pan, pp. 4917-4921, Proceedings of the 8th World Congress on Intelligent Control and Automation, , Jinan, China.

Sun J., Liu F., Si J., Mei S., 2010, Direct heuristic dynamic programming based on 86 an improved pid neural network and initial weighs choosing method, 7-9 July, 2010 Critical Infrastructure (CRIS), 5th International Conference on, 1-6, China.

Ying Z., Yunbin H., Min L., 2011, The research on data processing for dynamic batching-weighing system, pp. 888-890, The 6th International Conference on Computer Science & Education, 3-5 Aug., 2011, Singapore, Singapore.

Martin A. D., Molteno T. C. A., 2015, Automated weighing by sequential inference in dynamic environments, pp. 274-278, Proceedings of the 6th International Conference on Automation, Robotics and Applications, 17-19 Feb. 2015, Queenstown, New Zealand.

Nied?wiecki M., Pietrzak P., 2016, High-precision fir-model-based dynamic weighing system, IEEE Transactions on Instrumentation and Measurement, 65(10): 2349 – 2359.

López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T. , 2016, The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58.

Tang D, Dai M, Salido MA, Giret A 2016, Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput Ind 81:82–95.

Oliver Nelles, 2020, Nonlinear Dynamic System Identification, University of Siegen Netphen Germany, book.

Sendrescu D., Roman M., 2013,Parameter Identification of Bacterial Growth Bioprocesses using Particle Swarm Optimization, 9th Asian Control Conference (ASCC), 23-26 June , Istanbul, Turkey.

Sendrescu D., Bobasu E., 2013, Parameter Identification of Bacterial Growth Bioprocesses using Heuristics for Global Optimization, pp. 485-490, 17th International Conference on System Theory, Control and Computing (ICSTCC), 11-13 Oct., Sinaia, Romania

Ulinowicz M., Andrzejczak M., 2014, An Heuristic Approach to a Ship Nonlinear Model Identification, pp. 239-244, European Modelling Symposium, 21- 23 Oct., Pisa, Italy.

Kumar M., Aggarwal A. Rawat T.K., 2016, Bat Algorithm: Application to Adaptive Infinite Impulse Response System Identification, Arabian Journal for Science and Engineering, 41(9):3587-3604.

Ryzhikov S. and Semenkin E.S., 2016, Restart Operator Meta-heuristics for a Problem Oriented Evolutionary Strategies Algorithm in Inverse Mathematical MISO Modelling Problem Solving, pp. 1-11, V International Workshop on Mathematical Models and their Applications, 7–9 November, Krasnoyarsk, Russia.

Olivas F, Valdez F, Castillo O, Melin P. , 2016, Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070

Tanweer M, Suresh S, Sundararajan N 2016, Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf Sci 326:1–24. 10.1016/j.ins.2015.07.035.

Wu Y, Liu G, Guo X, Shi Y, Xie L 2017, A self-adaptive chaos and kalman filter-based particle swarm optimization for economic dispatch problem. Soft Comput 21(12):3353–3365.

Zheng F, Zecchin A, Newman J, Maier H, Dandy G 2017, An adaptive convergence-trajectory controlled ant colony optimization algorithm with application to water distribution system design problems. IEEE Trans Evol Comput 21(5):773–791.

Yang Q, Chen WN, Yu Z, Gu T, Li Y, Zhang H, Zhang J 2017, Adaptive multimodal continuous ant colony optimization. IEEE Trans Evol Comput 21(2):191–205.

Baktir A.E., 2018, System Identification Of Dynamic Weighing System With Heuristic Algorithm, M.Sc. Thesis, Erciyes University, Turkey.

Jhang JY, Lin CJ, Lin CT, Young KY 2018, Navigation control of mobile robots using an interval type-2 fuzzy controller based on dynamic-group particle swarm optimization. Int J Control Autom Syst 16(5):2446–2457.

Jiao R, Sun Y, Sun J, Jiang Y, Zeng S 2018, Antenna design using dynamic multi-objective evolutionary algorithm. IET Microw Antennas Propag 12(13):2065–2072.

Wu Q, Zhu Z, Yan X, Gong W., 2018, An improved particle swarm optimization algorithm for avo elastic parameter inversion problem. Concurr Comput Pract Exp, p e4987.

Alata?, B., 2007, Kaotik Harital? Parçac?k Sürü Optimizasyon Algoritmalar? Geli?tirme, Doktora Tezi, F?rat Üniversitesi, Fen Bilimleri Enstitüsü, Elaz??.

J. H. Holland, 1975, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan.

D. E. Goldberg,1989, Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley.

K. A. De Jong, 1975, Analysis of the Behaviour of a Class of Genetic Adaptive Systems, PhD Thesis, Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor.

Booker L., 1987, “Improving search in genetic algorithms,” In Genetic Algorithms and Simulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann Publishers.

G. Syswerda,1989, “Uniform crossover in genetic algorithms”, Proc. ICGA 3, pp. 2-9.

D. Simon, 2008, Biogeography-based optimization, IEEE Transactions on Evolutionary Computation (12) pp. 702-713.

Simon D 2009, ''A probabilistic analysis of a simplified biogeography basedoptimizationalgorithm''.

A. Colorni, M. Dorigo, V. Maniezzo, 1991, Distributed optimization by ant colonies, in: F. Vaerla, P. Bourgine (Eds.), Proceedings of the European Conference on Artificial Life, Elsevier Publishing, Paris, pp. 134–142.

Dorigo, M., & Stutzle, T. 2004, Ant colony optimization. Cambrige MA: MIT Press.

M. Dorigo, V. Maniezzo, 1996, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 26 (1) 29–41.

T. St ¨utzle, H. Hoos, 1997, MAX–MIN ant system and local search for the traveling salesman problem, in: IEEE International Conference on Evolutionary Computation, pp. 309–314.

M. Guntsch, M. Middendorf, 2002, Applying population based ACO to dynamic optimization problems, in: M. Dorigo, G. Di Caro, M. Sampels (Eds.), Ant Algorithms, Vol. 2463 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 111–122.

T. Stützle, 2004, Ant Colony Optimization, MIT Press.

L. Rutkowski, 2005, Computational Intelligence, Methods and Techniques "Springer Verlag Germany.

D. Karaboga, 2005, An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Turkey.

Bansal, J.C., Sharma, H., Jadon, S.S. 2013, Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Parad. 5(1–2), 123–159.

Karaboga, D., Basturk, B. 2008, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697.

Perrot, M. H., Cohen , R. J., 1996. An efficient approach to arma modelling of biolagical systems with multiple ?nputs and delays, IEEE Transactions on Biomedical Engineering, 43(1), 1-14

Özçelik Y., 2007 Farksal Evrim Algoritmas? Kullanarak Sistem Kimliklendirme, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.

Eykhoff, P., 1974. System Identification, Parameter & State Estimation, John Wiley & Sons University of Southampton, UK

Close, C.M., Frederick, D.K., 1978. Modelling & Analysis of Dynamic Systems, Houghton Mifflin Co., London

Schwarzenbach, J., Gill, K.F., 1988. System Modelling & Control, Chapman & Hall, 2nd Ed., NY 88

Ogata, K., 1990. Modern Control Engineering, Prentice-Hall, 2nd Ed.

Golden, J., Verwer, A., 1991. Control System Design & Simulation, McGraw-Hill Book Co., UK

Kupper, W.E., 1990, High accuracy mass measurement from micrograms to tons, ISA Transactions, 29(4):11-20.

Shi, W.J., Brignell, J.E., 1991, On-line optimisation in sensors frequency response, Sensors & Actuators A, 25:37-41.

Haberman, R., 1977, Mathematical Models, Mechanical Vibrations, Population Dynamics & Traffic Flow, Prentice-Hall Inc., Englewood Cliffs, London

Spriet, J.A., Vansteenkiste, G.C., 1982, Computer Aided Modeling And Simulation, Academic Press, London.

Danaci, M. and Horrocks, D.H., 1995, A non-linear regression technique for improved dynamic weighing, pp. 507-510, Proc. Euro. Conf. on Circuit Theory and Design, Aug., Istanbul, Turkey.

Close, C.M., Frederick, D.K., 1978, Modelling & Analysis of Dynamic Systems, Houghton Mifflin Co. London.

Norden, K.E., Kersten, 1984, Electronic Weighing ?n Industrial Processes, Granada Technical Books, London.

King (Fellow), A., 1987, An introduction to weighing systems, Electronic Technology, 21:25-29.




How to Cite

Danaci, M., Koylu, F., & Al-Sumaidaee, Z. A. (2021). Identification of Dynamic Models by Using Metaheuristic Algorithms. ADI Journal on Recent Innovation, 3(1), 36–58.